ALLEGATO 3 ATMOSFERA

1. INTRODUZIONE

In questo capitolo sono presentate le metodologie utilizzate per la stima delle emissioni da traffico, i dati utilizzati relativamente ai flussi di traffico e al parco circolante e i risultati ottenuti.

La stima è stata condotta con riferimento ai seguenti 3 scenari:

• scenario Variante PII: scenario 1;

• scenario PII approvato: scenario 2;

scenario senza PII: scenario 0.

2. MODELLO DI STIMA DELLE EMISSIONI DA TRAFFICO

L'emissione oraria di un inquinante su un generico arco di strada di lunghezza L è stimata attraverso la seguente relazione:

 $E_{i,j} = \Sigma_c(FE_{i,c} \ \check{z} \ F_{c,j}) \ \check{z} \ L_i$

dove

 E_i = emissione oraria dell'inquinante i nell'arco di strada j (g h⁻¹)

FE_{i,c} = fattore di emissione (g km⁻¹) dell'inquinante i per la categoria di veicolo c

 $F_{c,j}$ = numero di veicoli della categoria c transitanti sull'arco j in un'ora (h⁻¹)

L_i = lunghezza dell'arco j di strada considerato (km).

Per la stima delle emissioni da traffico sono stati utilizzati i fattori di emissione proposti dalla metodologia europea COPERT IV (Computer Programme to Calculate Emission from Road Transport), riferimento europeo per la stima delle emissioni da traffico (EEA, 2008).

I fattori di emissione esprimono la quantità di inquinante emesso in funzione della velocità media di un ciclo di guida e sono ricavati da misure sperimentali su veicoli rappresentativi delle diverse tecnologie motoristiche e in funzione della velocità di marcia dei veicoli, su cicli di guida standardizzati.

L'approccio proposto dal COPERT calcola i fattori di emissione medi delle diverse tipologie veicolari in relazione alla velocità media di percorrenza di un ciclo di guida. I dati sono aggregati in accordo con la tecnologia dei veicoli, categoria di capacità, anno di immatricolazione e da questi, se ne ricava una curva che definisce i fattori di emissione in funzione della velocità media.

I fattori di emissione sono stati calcolati, per ogni categoria di veicolo COPERT, sulla base delle formulazioni riportate nel manuale COPERT IV e in relazione alle velocità medie dei veicoli sui tratti di strada definiti dalla studio di traffico.

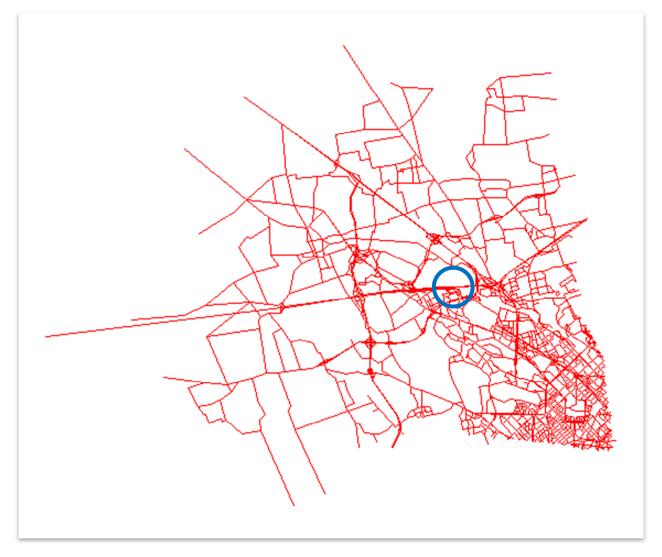
I fattori di emissione, nella formulazione più generale, possono essere espresse dalla seguente formula:

$$FE = a + b * V + c * V^{2} + d * V^{e} + f * ln(V) + g * exp(h*V)$$
 (1-1) dove:

FE fattore di emissione a caldo [g km⁻¹]

V velocità media [km h⁻¹]

a, b, c, d, e, f, g, h coefficienti definiti per ogni inquinante e tipo di veicolo [-].


I fattori di emissione derivano da una serie di parametri (velocità di marcia, stato di manutenzione del veicolo, temperatura del motore, efficienza dei dispositivi di abbattimento delle emissioni, stile di guida del conducente, ecc.) ma ciò che più differenzia il fattore di emissione, all'interno di una stessa categoria di veicoli, è il sistema di controllo delle emissioni, dipendente dalla tecnologia e dai limiti normativi vigenti nell'anno di immatricolazione.

Per questo risulta importante differenziare, ad esempio, all'interno della categoria degli autoveicoli passeggeri a benzina in transito su un arco in un dato istante, quanti sono i veicoli non catalizzati (definiti come Conventional) e quanti invece sono dotati di marmitta catalitica. Tra questi ultimi risulta poi necessario distinguere i veicoli catalizzati di prima generazione (chiamati EURO I dalla direttiva 91/441 che ne ha imposto l'immissione sul mercato), da quelli di seconda generazione (EURO II) entrati sul mercato nel 1997, da quelli di terza (EURO III), entrati sul mercato nel 2001, fino a quelli di quarta generazione (EURO IV-V), attualmente in vendita. In questo modo si tiene conto dell'evoluzione delle tecnologie motoristiche verso sistemi di controllo delle emissioni sempre più efficienti.

Le altre informazioni necessarie per la stima delle emissioni sono quindi:

- § lunghezza degli archi che compongono il grafo stradale dell'area di studio;
- § flussi di traffico circolanti sulla rete stradale per ogni arco considerato, suddivisi in settori di tipologie veicolari;
- § composizione del parco circolante;
- § velocità media per ogni arco di strada.

3. ACQUISIZIONE E ORGANIZZAZIONE DEI DATI DI TRAFFICO

Per quanto riguarda i parametri viabilistici necessari al modello (numero veicoli leggeri e pesanti, suddivisi per cilindrata ed età del veicolo), sono stati acquisiti dallo studio effettuato dalla società TRM, come descritto al capitolo relativo al traffico.

I dati consistono nei flussi veicolari nell'ora di punta mattutina distinti per tipologie veicolari e delle velocità di scorrimento medio, per un grafo in grado di descrivere tutta quella parte del reticolo stradale interessato da significative variazioni di flussi di traffico per effetto dell'intervento in oggetto a Cascina Merlata.

Rimandando al cap. relativo al traffico per dettagli sulle simulazioni condotte sui flussi di traffico e sui conseguenti risultati, si riporta in Tabella 1 un quadro riassuntivo del totale dei km percorsi (prodotto fra i flussi in ogni arco e la lunghezza dell'arco stesso), nell'ora di punta.

Tabella 1 – Flussi veicolari (totale km percorsi) nell'ora di punta

Scenari	Estensione della rete [Km]	Veic*Km	Veic*ora	Vel media [Km/h]	quota rete in congestione (F/C>0.80)	rapporto flusso capacità complessivo
PII_Vigente_HPM	1074.2	1076751	42765	25.18	18.4%	47.6%
PII_Variante_HPM	1074.2	1075263	42629	25.22	18.3%	47.5%
PII_Vigente_HPS	1074.2	1052153	37208	28.28	16.2%	45.5%
PII_Variante_HPS	1074.2	1052096	37195	28.29	16.3%	45.5%

Nella valutazione delle emissioni da traffico veicolare risulta inoltre di fondamentale importanza considerare, oltre al numero di veicoli totali in transito su ogni arco della rete stradale, la tipologia dei veicoli stessi, ossia la distribuzione percentuale dei veicoli nei diversi settori (autoveicoli, veicoli leggeri e veicoli pesanti), e nelle categorie previste dalla metodologia COPERT per la stima delle emissioni da traffico.

Lo schema metodologico generale per l'identificazione delle tipologie veicolari transitanti sugli archi stradali è riportato in Figura 2 ed è in seguito illustrato nel dettaglio.

Dati di traffico

Flussi veicolari per settore

Dati immatricolazioni

Flussi veicolari per codice COPERT

Stima fattori di emissione COPERT

Stima emissioni

Figura 2 – Schema metodologico

4. ANALISI DEI DATI DEL PARCO CIRCOLANTE IMMATRICOLATO

Dopo aver individuato i flussi veicolarti per ogni tipologia (denominata in seguito "settore"), si è effettuata una valutazione del parco circolante immatricolato dell'area di studio, al fine di valutare la presenza dei veicoli in classi di maggior dettaglio.

Nel metodo COPERT per la stima delle emissioni in atmosfera i veicoli sono infatti classificati in base a caratteristiche che risultano fondamentali nella determinazione dei fattori di emissione.

I veicoli sono suddivisi in 146 categorie dipendenti dalla tipologia (cilindrata o peso), dall'anno di immatricolazione e dal tipo di carburante utilizzato dai veicoli (benzina verde e gasolio).

In primo luogo si distinguono delle macroclassi in base alla tipologia e all'uso del mezzo; successivamente queste vengono ripartite in base al combustibile utilizzato, al peso (per i veicoli commerciali) o alla cilindrata (per le autovetture) ed infine in base all'entrata in vigore della normativa europea di regolamentazione delle emissioni per i veicoli immessi sul mercato a partire da una certa data.

Ai fini della presente valutazione si è assunto che il parco circolante nel grafo considerato nei dintorni della zona di cascina Merlata possa essere ben rappresentato dal parco veicoli immatricolato in Lombardia, in quanto la tipologia di spostamenti indotti, e in transito sull'autostrada, ha una valenza almeno regionale.

Sono stati considerati gli ultimi dati disponibili sulla tipologia di parco circolante, ossia i dati disponibili sul sito dell'Automobil Club Italiano (www.aci.it), relativi al numero di veicoli immatricolati in Lombardia, relativamente nell'anno 2007. Tali dati sono classificati per settore (autoveicoli, veicoli commerciali leggeri, veicoli commerciali pesanti e motocicli), per

alimentazione (diesel e benzina), per cilindrata, per peso (nel caso dei veicoli merci) e per categoria legislativa (EURO).

La distribuzione nelle categorie COPERT, è riportata nella Tabella 2.

Tabella 2 – Composizione percentuale del parco circolante nel 2007 in Lombardia

CLASSIFICAZIONE	EURO	NUMERO VEICOLI	CLASSIFICAZIONE	EURO	NUMERO VEICOLI
Benzina <1,41	Conventional	349.859	Benzina >3,5t	Conventional	1.859
Benzina <1,4 1	Euro I - 91/441/EEC	246.676	Diesel <7,5t	Conventional	13.149
Benzina <1,4 1	Euro II - 94/12/EC	845.612	Diesel <7,5t	Euro I - 91/542/EEC Stage I	2.206
Benzina <1,4 1	Euro III - 98/69/EC Stage 2000	539.957	Diesel <7,5t	Euro II - 91/542/EEC Stage II	4.421
Benzina <1,41	Euro IV - 98/69/EC Stage 2005	639.722	Diesel <7,5t	Euro III - 1999/96/EC	5.066
Benzina 1,4 - 2,01	Conventional	128.419	Diesel <7,5t	Euro IV - COM(1998) 776	753
Benzina 1,4 - 2,01	Euro I - 91/441/EEC	133.582	Diesel <7,5t	Euro V - COM(1998) 776	155
Benzina 1,4 - 2,01	Euro II - 94/12/EC	362.576	Diesel 7,5 - 16t	Conventional	14.656
Benzina 1,4 - 2,01	Euro III - 98/69/EC Stage 2000	157.705	Diesel 7,5 - 16t	Euro I - 91/542/EEC Stage I	2.979
Benzina 1,4 - 2,01	Euro IV - 98/69/EC Stage 2005	196.679	Diesel 7,5 - 16t	Euro II - 91/542/EEC Stage II	5.458
Benzina >2,01	Conventional	21.721	Diesel 7,5 - 16t	Euro III - 1999/96/EC	4.827
Benzina >2,01	Euro I - 91/441/EEC	7.521	Diesel 7,5 - 16t	Euro IV - COM(1998) 776	713
Benzina >2,01	Euro II - 94/12/EC	21.541	Diesel 7,5 - 16t	Euro V - COM(1998) 776	38
Benzina >2,01	Euro III - 98/69/EC Stage 2000	22.811	Diesel 16-32t	Conventional	16.306
Benzina >2,01	Euro IV - 98/69/EC Stage 2005	39.317	Diesel 16-32t	Euro I - 91/542/EEC Stage I	4.768
Diesel <2,01	Conventional	40.960	Diesel 16-32t	Euro II - 91/542/EEC Stage II	13.718
Diesel <2,01	Euro I - 91/441/EEC	24.501	Diesel 16-32t	Euro III - 1999/96/EC	16.515
Diesel <2,01	Euro II - 94/12/EC	225.582	Diesel 16-32t	Euro IV - COM(1998) 776	2.441
Diesel <2,01	Euro III - 98/69/EC Stage 2000	631.831	Diesel 16-32t	Euro V - COM(1998) 776	167
Diesel <2,01	Euro IV - 98/69/EC Stage 2005	527.645	Diesel >32t	Conventional	2.803
Diesel >2,01	Conventional	28.041	Diesel >32t	Euro I - 91/542/EEC Stage I	1.505
Diesel >2,01	Euro I - 91/441/EEC	14.367	Diesel >32t	Euro II - 91/542/EEC Stage II	6.486
Diesel >2,01	Euro II - 94/12/EC	77.959	Diesel >32t	Euro III - 1999/96/EC	9.616
Diesel >2,01	Euro III - 98/69/EC Stage 2000	163.896	Diesel >32t	Euro IV - COM(1998) 776	2.271
Diesel >2,01	Euro IV - 98/69/EC Stage 2005	98.914	Diesel >32t	Euro V - COM(1998) 776	225
GPL (convertita)	Conventional	22.130	4 Tempi 50 - 250cc	Conventional	97.903
GPL (convertita)	Euro I - 91/441/EEC	11.180	4 Tempi 50 - 250cc	97/24/EC	55.917
GPL (convertita)	Euro II - 94/12/EC	23.188	4 Tempi 50 - 250cc	EURO II	42.262
GPL (convertita)	Euro III - 98/69/EC Stage 2000	10.229	4 Tempi 50 - 250cc	EURO III	19.745
GPL (convertita)	Euro IV - 98/69/EC Stage 2005	17.020	4 Tempi 250 - 750cc	Conventional	137.619
Gas naturale (convertita)	Conventional	3.030	4 Tempi 250 - 750cc	97/24/EC	55.452
Gas naturale (convertita)	Euro I - 91/441/EEC	1.841	4 Tempi 250 - 750cc	EURO II	83.955
Gas naturale (convertita)	Euro II - 94/12/EC	4.654	4 Tempi 250 - 750cc	EURO III	36.731
Gas naturale (convertita)	Euro III - 98/69/EC Stage 2000	4.193	4 Tempi >750cc	Conventional	40.939
Gas naturale (convertita)	Euro IV - 98/69/EC Stage 2005	11.097	4 Tempi >750cc	97/24/EC	33.482
Benzina <3,5t	Conventional	9.491	4 Tempi >750cc	EURO II	28.594
Benzina <3,5t	Euro I - 93/59/EEC	7.011	4 Tempi >750cc	EURO III	18.553
Benzina <3,5t	Euro II - 96/69/EC	12.724	Totale	EGRO III	7.031.190
Benzina <3,5t	Euro III - 98/69/EC Stage 2000	10.407	Totale		7.031.170
Benzina <3.5t	Euro IV - 98/69/EC Stage 2005	5.776			
Benzina <3,5t	Euro V - futuro	34			
Diesel <3,5t	Conventional	71.491			
Diesel <3,5t	Euro I - 93/59/EEC	57.185			
Diesel <3,5t	Euro II - 96/69/EC	140.522			
Diesel <3,5t	Euro III - 98/69/EC Stage 2000	211.926			
Diesel <3,5t	Euro IV - 98/69/EC Stage 2005	63.011			
, , , , , , , , , , , , , , , , , , ,		1.403			
Diesel <3,5t	Euro V - futuro	1.403			

5. <u>IPOTESI DI EVOLUZIONE DEL PARCO CIRCOLANTE</u>

Per la stima delle emissioni degli autoveicoli nello scenario analizato relativo all'anno 2015 è necessario considerare adeguate ipotesi di rinnovo del parco circolante. È questo un approfondimento indispensabile, in quanto il rinnovo del parco circolante porta alla circolazione di veicoli ad emissioni sempre più ridotte. Lo sviluppo della tecnologia motoristica e l'adozione di

carburanti riformulati consente, infatti, ai nuovi veicoli immessi sul mercato di rispettare limiti di legge alle emissioni sempre più restrittivi.

Si è previsto quindi che i veicoli più anziani (conventional, Euro I, Euro II e Euro III) siano progressivamente sostituiti da veicoli rispondenti ai requisiti da veicoli Euro IV.

La stima dei rinnovo del parco circolante è molto complessa in quanto negli ultimi anni il rinnovo del parco veicoli ha subito una fortissima accelerazione, dovuta alla presenza di incentivi all'acquisto di rilevante entità. La valutazione del rinnovo tecnologico e di conseguenza il parco circolante al 2015 si è basata sull'ipotesi della continuazione del trend di rinnovo del parco registrato dal 2005 al 2007.

Rispetto alla distribuzione dei veicoli immatricolati, è inoltre necessario considerare l'effetto delle diverse percorrenze dei veicoli che sono diverse per le tipologie veicolari e per l'età dei veicoli (i veicoli nuovi tendono ad essere più utilizzati) e che sono in grado di influire sull'effettiva composizione dei veicoli circolanti sulle strade.

Al fine di valutare in modo realistico la probabilità della presenza delle diverse tipologie veicolari sugli archi dell'area di studio, il numero di veicoli immatricolato per ogni categoria COPERT è stato inoltre pesato in relazione alle percorrenze tipiche delle diverse categorie veicolari.

Sulla base di studi disponibili in letteratura (Caserini S., Giugliano M., Pastorello C., 2007, *Scenari di emissioni di particolato e precursori dal traffico veicolare in Lombardia*. Ingegneria Ambientale. vol. XXXVI n. 3 marzo 2007) si può infatti ritenere che gli autoveicoli di generazione più recente raggiungono percorrenze maggiori rispetto agli autoveicoli più vecchi di uguale cilindrata.

Si è quindi ritenuto necessario rappresentare il diverso grado di utilizzo dei veicoli attribuendo ai veicoli più anziani una riduzione percentuale della loro numerosità, che rappresenta la minore probabilità che il veicolo circoli sul grafo considerato, rispetto ai veicoli di più nuova generazione.

Nelle successive tabelle 3 e 4 è mostrata la ripartizione percentuale del numero dei veicoli immatricolati nel 2005 e nel 2007, nonché la ripartizione ipotizzata per lo scenario analizzato nella presente valutazione (2015). Sono altresì indicate le percorrenze percentuali considerate per le diverse classi euro e nelle ultime due colonne le distribuzioni percentuali dei veicoli effettivamente circolanti, utilizzate per la stima delle emissioni.

Tabella 3 – Proiezione della distribuzione del parco circolante di automobili per classi euro nel periodo 2007-2015

				Proiezione		%	%
CLASSIFICAZIONE	EURO	Parco	Parco	parco 2015	Quota	effettiva	effettiva
		2005 (%)	2007 (%)	(%)	percorrenze	2007	2015
Benzina <1,41	ECE 15/04	20%	13%	5%	30%	4%	2%
Benzina <1,41	Euro I - 91/441/EEC	18%	9%	5%	50%	5%	3%
Benzina <1,4 l	Euro II - 94/12/EC	31%	32%	15%	80%	26%	12%
Benzina <1,41	Euro III - 98/69/EC Stage 2000	24%	21%	15%		21%	15%
Benzina <1,4 l	Euro IV - 98/69/EC Stage 2005	8%	24%	60%		45%	69%
Benzina 1,4 - 2,01	ECE 15/04	19%	13%	5%	30%	4%	2%
Benzina 1,4 - 2,01	Euro I - 91/441/EEC	25%	14%	8%	50%	7%	4%
Benzina 1,4 - 2,01	Euro II - 94/12/EC	32%	37%	20%	80%	30%	16%
Benzina 1,4 - 2,01	Euro III - 98/69/EC Stage 2000	19%	16%	12%		16%	12%
Benzina 1,4 - 2,01	Euro IV - 98/69/EC Stage 2005	6%	20%	55%		44%	67%
Benzina >2,01	ECE 15/04	22%	19%	2%	30%	6%	1%
Benzina >2,01	Euro I - 91/441/EEC	7%	7%	3%	50%	3%	2%
Benzina >2,01	Euro II - 94/12/EC	26%	19%	10%	80%	15%	8%
Benzina >2,01	Euro III - 98/69/EC Stage 2000	31%	20%	10%		20%	10%
Benzina >2,01	Euro IV - 98/69/EC Stage 2005	13%	35%	75%		55%	80%
Diesel <2,01	Conventional	5%	3%	1%	30%	1%	0%
Diesel <2,01	Euro I - 91/441/EEC	3%	2%	1%	50%	1%	1%
Diesel <2,01	Euro II - 94/12/EC	24%	16%	5%	80%	12%	4%
Diesel <2,01	Euro III - 98/69/EC Stage 2000	59%	46%	10%	100%	46%	10%
Diesel <2,01	Euro IV - 98/69/EC Stage 2005	14%	36%	83%		40%	85%
Diesel >2,01	Conventional	12%	7%	2%	30%	2%	1%
Diesel >2,01	Euro I - 91/441/EEC	6%	4%	2%	50%	2%	1%
Diesel >2,01	Euro II - 94/12/EC	25%	20%	6%	80%	16%	5%
Diesel >2,01	Euro III - 98/69/EC Stage 2000	51%	43%	10%	100%	43%	10%
Diesel >2,01	Euro IV - 98/69/EC Stage 2005	6%	26%	80%		37%	84%

Tabella 4 – Proiezione della distribuzione del parco circolante di veicoli leggeri, pesanti e moto per classi euro nel periodo 2007-2015

CLASSIFICAZIONE	EURO		Parco 2007	Proiezione parco 2015
D : 0.5		(%)	(%)	(%)
Benzina <3,5t	Conventional	41%	21%	10%
Benzina <3,5t	Euro I - 93/59/EEC	18%	15%	10%
Benzina <3,5t	Euro II - 96/69/EC	14%	28%	15%
Benzina <3,5t	Euro III - 98/69/EC Stage 2000	25%	23%	15%
Benzina <3,5t	Euro IV - 98/69/EC Stage 2005	1%	13%	50%
Diesel <3,5t	Conventional	25%	13%	5%
Diesel <3,5t	Euro I - 93/59/EEC	15%	11%	5%
Diesel <3,5t	Euro II - 96/69/EC	19%	26%	15%
Diesel <3,5t	Euro III - 98/69/EC Stage 2000	40%	39%	20%
Diesel <3,5t	Euro IV - 98/69/EC Stage 2005	1%	12%	55%
Diesel <7,5t	Conventional	56%	51%	4%
Diesel <7,5t	Euro I - 91/542/EEC Stage I	7%	9%	4%
Diesel <7,5t	Euro II - 91/542/EEC Stage II	19%	17%	4%
Diesel <7,5t	Euro III - 1999/96/EC	18%	20%	15%
Diesel <7,5t	Euro IV - COM(1998) 776	0%	3%	25%
Diesel <7,5t	Euro V - COM(1998) 776	0%	1%	48%
Diesel 7,5 - 16t	Conventional	52%	51%	25%
Diesel 7,5 - 16t	Euro I - 91/542/EEC Stage I	11%	10%	10%
Diesel 7,5 - 16t	Euro II - 91/542/EEC Stage II	21%	19%	15%
Diesel 7,5 - 16t	Euro III - 1999/96/EC	16%	17%	15%
Diesel 7,5 - 16t	Euro IV - COM(1998) 776	0%	2%	15%
Diesel 7,5 - 16t	Euro V - COM(1998) 776	0%	0%	20%
Diesel 16-32t	Conventional	36%	30%	5%
Diesel 16-32t	Euro I - 91/542/EEC Stage I	9%	9%	5%
Diesel 16-32t	Euro II - 91/542/EEC Stage II	29%	25%	15%
Diesel 16-32t	Euro III - 1999/96/EC	27%	31%	20%
Diesel 16-32t	Euro IV - COM(1998) 776	0%	5%	20%
Diesel 16-32t	Euro V - COM(1998) 776	0%	0%	35%
Diesel >32t	Conventional	20%	12%	5%
Diesel >32t	Euro I - 91/542/EEC Stage I	9%	7%	5%
Diesel >32t	Euro II - 91/542/EEC Stage II	35%	28%	15%
Diesel >32t	Euro III - 1999/96/EC	36%	42%	20%
Diesel >32t	Euro IV - COM(1998) 776	0%	10%	20%
Diesel >32t	Euro V - COM(1998) 776	0%	1%	35%
4 Tempi 50 - 250cc	Conventional	23%	45%	15%
4 Tempi 50 - 250cc	EURO I	51%	26%	10%
4 Tempi 50 - 250cc	EURO II	25%	20%	40%
4 Tempi 50 - 250cc	EURO III	2%	9%	35%
4 Tempi 250 - 750cc	Conventional	49%	44%	20%
4 Tempi 250 - 750cc	EURO I	28%	18%	10%
4 Tempi 250 - 750cc	EURO II	22%	27%	40%
4 Tempi 250 - 750cc	EURO III	2%	12%	30%
4 Tempi >750cc	Conventional	42%	34%	15%
4 Tempi >750cc 4 Tempi >750cc	EURO I	36%	28%	15%
4 Tempi >750cc 4 Tempi >750cc	EURO II	19%	24%	40%
1		2%	15%	30%
4 Tempi >750cc	EURO III	L 2%	15%	30%

6. STIMA DELLE EMISSIONI DA TRAFFICO

Applicando la metodologia illustrata nei capitoli precedenti, utilizzando quindi per ogni scenario i rispettivi dati di tipologie veicolari circolanti e i corrispondenti fattori di emissione e flussi veicolari per arco, sono state ottenute le emissioni orarie di punta mattutina per gli inquinanti CO, COV, NOx, PM10 e Benzene.

Le emissioni sono state stimate per i tre scenari precedentemente presentati:

- scenario Variante PII: scenario 1;
- scenario PII approvato: scenario 2;
- scenario senza PII: scenario 0.

In Tabella 5 e nelle successive figure sono mostrate per tutti gli scenari analizzati le emissioni del traffico veicolare dell'ora di punta suddivise per categoria veicolare e totali sull'intero grafo stradale indicato in Figura 1 – Grafo stradale complessivo analizzato.

In generale, i risultati evidenziano per tutti gli scenari che il maggiore contributo per NOx è rappresentato dalle emissioni autoveicolari e di mezzi pesanti, per CO, COV e benzene dalle emissioni degli autoveicoli e dei motocicli e, infine, per il PM10 dalle emissioni degli autoveicoli.

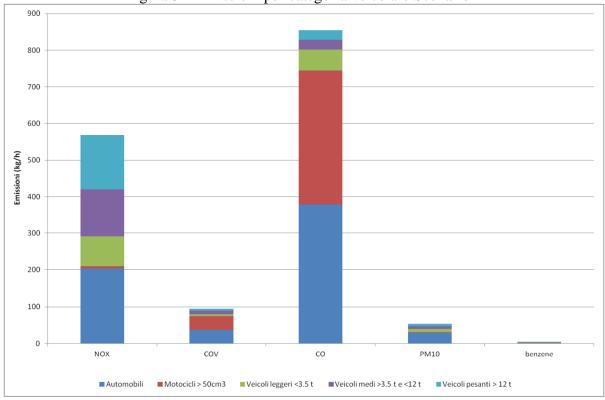
Dal confronto tra gli scenari si nota che le emissioni relative allo scenario 1 (scenario 2015 Variante PII) presentano minime variazioni in negativo rispetto allo scenario 2 (scenario 2015 PII approvato), in media sul totale delle emissioni pari a -0.2%/-0.3% (Tabella 6).

Rispetto allo scenario 0 (scenario 2015 senza PII), lo scenario 1 presenta incrementi delle emissioni totali di NOx pari al 18%, mentre per CO, PM10, COV e benzene gli incrementi variano tra il 23% e il 27% (Tabella 7).

Variazioni del tutto analoghe si evodenziano dal confronto tra lo scenario 2 (scenario 2015 PII approvato) e lo scenario 0.

Tabella 5 – Emissioni nell'ora di punta (kg/h) per categoria veicolare

	Tabella 5 – Eli	Motocicli >	Veicoli	Veicoli medi	Veicoli	
Scenario 1	Automobili	50cm3	leggeri <3.5 t		pesanti > 12 t	Totale
NOX	203	8	80	129	148	568
COV	37	36	6	10	6	95
СО	379	366	56	28	26	854
PM10	30	1	8	8	6	54
benzene	1.61	1.54	0.28	0.42	0.25	4.10
		Motocicli >	Veicoli	Veicoli medi	Veicoli	
Scenario 2	Automobili	50cm3	leggeri <3.5 t	>3.5 t e <12 t	pesanti > 12 t	Totale
NOX	204	8	80	129	149	569
COV	38	36	6	10	6	96
СО	380	367	56	28	26	857
PM10	30	1	8	8	6	54
benzene	1.62	1.54	0.28	0.42	0.25	4.11
		Motocicli >	Veicoli	Veicoli medi	Veicoli	
Scenario 0	Automobili	50cm3	leggeri <3.5 t	>3.5 t e <12 t	pesanti > 12 t	Totale
NOX	155	6	61	110	149	481
COV	28	28	5	8	6	75
CO	291	288	43	23	26	671
PM10	23	1	6	7	6	43
benzene	1.17	1.17	0.21	0.33	0.25	3.1


Tabella 6 – Variazione emissioni nell'ora di punta per categoria veicolare tra scenario 1 e scenario 2

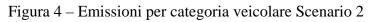

		Motocicli >	Veicoli	Veicoli medi	Veicoli	
	Automobili	50cm3	leggeri <3.5 t	>3.5 t e <12 t	pesanti > 12 t	Totale
NOX	-0.47%	-0.21%	0.03%	0.00%	-0.13%	-0.20%
COV	-0.46%	-0.21%	0.03%	0.00%	-0.14%	-0.27%
CO	-0.45%	-0.20%	0.03%	0.00%	-0.14%	-0.29%
PM10	-0.48%	-0.18%	0.03%	0.00%	-0.13%	-0.28%
benzene	-0.46%	-0.21%	0.03%	0.00%	-0.14%	-0.27%

Tabella 7 – Variazione emissioni nell'ora di punta per categoria veicolare dello scenario 1 e scenario 2 rispetto allo scenario 0

		Motocicli >	Veicoli	Veicoli medi	Veicoli	
Scenario 1	Automobili	50cm3	leggeri <3.5 t	>3.5 t e <12 t	pesanti > 12 t	Totale
NOX	31%	28%	30%	17%	0%	18%
COV	34%	28%	31%	18%	0%	26%
CO	30%	27%	30%	18%	-1%	27%
PM10	31%	23%	29%	16%	0%	23%
benzene	34%	28%	31%	18%	0%	26%
Scenario 2	Automobili	Motocicli > 50cm3	Veicoli leggeri <3.5 t	Veicoli medi >3.5 t e <12 t	Veicoli pesanti > 12 t	Totale
NOX	31%	28%	30%	17%	0%	18%
COV	34%	28%	31%	18%	0%	27%
CO	31%	27%	30%	18%	0%	27%
PM10	32%	23%	29%	16%	0%	24%
benzene	34%	28%	31%	18%	0%	27%

Figura 3 – Emissioni per categoria veicolare Scenario 1

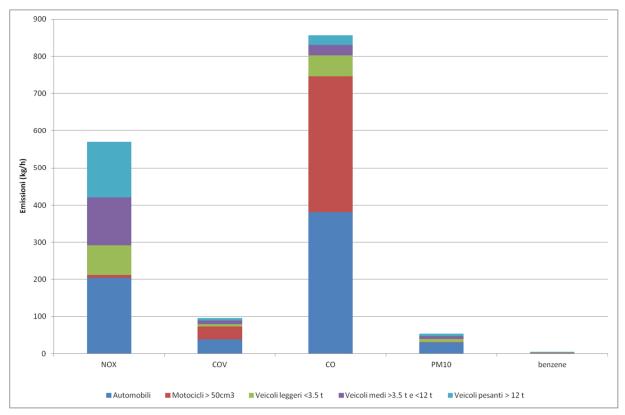
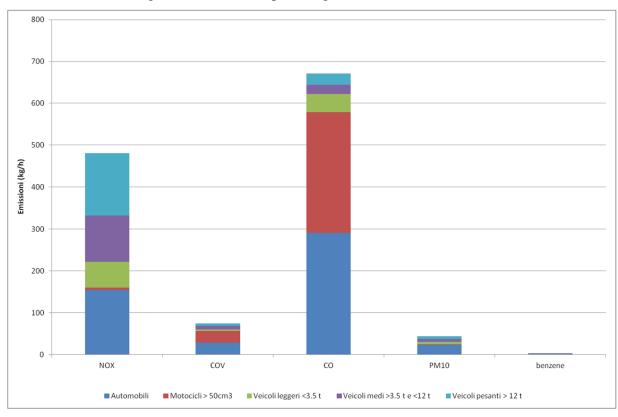



Figura 5 – Emissioni per categoria veicolare Scenario 0

Le emissioni totali giornaliere (**Errore. L'origine riferimento non è stata trovata.**) sono state stimate utilizzando i coefficienti di variazione dei flussi di traffico forniti dallo studio trasportistico realizzato da TRM, differenti per cinque diverse tipologie di archi del grafo.

Tabella 8 – Emissioni giornaliere (t/giorno) in atmosfera

	Scenario 1	Scenario 2	Scenario 0
NOX	8.2	8.2	6.9
COV	1.3	1.3	1.0
CO	11.7	11.8	9.2
PM10	0.8	0.8	0.6
benzene	0.06	0.06	0.04

Le emissioni annue possono essere stimate ipotizzando che i livelli emissivi del giorno medio possono essere rappresentative dei giorni feriali, mentre per i giorni festivi si possono considerare emissioni sensibilmente inferiori. In <u>via cautelativa</u>, comunque, in Tabella 9 si riportano le emissioni annue stimate moltiplicando le emissioni giornaliere per 365 giorni/anno.

Tabella 9 – Emissioni annue (t/anno) in atmosfera

	Scenario 1	Scenario 2	Scenario 0
NOX	2990	2996	2534
COV	467	468	371
СО	4276	4289	3365
PM10	285	286	228
benzene	20	20	16

Nella successiva tabella si riportano le stime delle emissioni da traffico distinguendo il contributo del traffico di fondo e quello del traffico indotto dal progetto in esame.

In termini di emissioni complessive per tutti gli inquinanti analizzati, il progetto di Variante PII Cascina Merlata rappresenta quote inferiori all'1% rispetto al traffico totale che insiste sull'intero grafo stradale analizzato.

Tabella 10 – Emissioni annue (t/anno) in atmosfera

		Scenario 1			Scenario 2		
	Traffico indotto dal progetto	Traffico di fondo	Totale traffico	Traffico indotto dal progetto	Traffico di fondo	Totale traffico	Totale traffico
NOX	13	2977	2990	16	2980	2996	2534
COV	2	465	467	3	465	468	371
СО	24	4252	4276	28	4261	4289	3365
PM10	2	283	285	2	284	286	228
benzene	0.1	20	20	0.1	20	20	16

Tabella 11 – Rapporto emissioni da traffico indotte dal progetto e emissioni da traffico totali

	Scenario 1	Scenario 2
NOX	0.4%	0.5%
COV	0.5%	0.6%
CO	0.6%	0.6%
PM10	0.7%	0.8%
benzene	0.5%	0.6%

Dall'analisi dei risultati relativi alla stima delle emissioni in atmosfera, si rilevano variazioni decisamente contenute tra lo scenario di PII Vigente e lo scenario di PII Variante: pertanto l'impatto conseguente alla presente proposta di variante non determina sostanziali variazioni in termini di emissioni in atmosfera; inoltre, in termini di emissioni complessive per tutti gli inquinanti analizzati, il progetto di Variante PII Cascina Merlata rappresenta quote inferiori all'1% rispetto al traffico totale che insiste sull'intero grafo stradale analizzato.